

		Skip to content

			
			
		
		
						
				
											
									
											
					
						
				
					Freaky Jolly
				
			
						
				
				

			
					

								

																									
										
					
		
	
		Search for:
		
					
				Search
				
						
						
			
			
	

			
				
					Search
					
						
						 				
			

		

				

									

												

					

								

			

		
		
						
				
																		
										
				

 JavaScript

 Menu Toggle

	

 Angular
	

 React
	

 Vue
	

 Ionic Framework
	

 jQuery
	

 NodeJs
	

 Next.js

	

 Firebase
	

 Android
	

 Laravel
	

 Python

		

									

																		

					

								

			

		
				
				About Us
	Blog
	Contact Us
	Disclaimer
	Front Page
	Guest Post Guidelines for Freaky Jolly
	Privacy Policy

		

			

		
		
									
													
										
											
					
						
				
					Freaky Jolly
				
			
						
				
				

			
					

									

																									
										
						
				
					Main Menu
					
											
									
			

					

									

											

						

	

		
				
				About Us
	Blog
	Contact Us
	Disclaimer
	Front Page
	Guest Post Guidelines for Freaky Jolly
	Privacy Policy

		

			

		
			
		
		

	

		
					
				

	
	

	
	
		

			
			React 17 Generate PDF from HTML Page Example – React-to-print Tutorial
			
				Leave a Comment			

			 / By 			
				
				Jolly			
			
		

		 / Updated on April 30, 2023

			
		

	
	
	

		
		

Create PDF files from HTML content example is going to be discussed; In this tutorial, we will discuss how to generate and export PDF documents from HTML content in React application.

The PDF(Portable Document Format) files are immensely used file format, which is used for many purposes. PDF files can be easily shared as a document that is more secure and can’t be altered. These can be easily protected via password and shared as printed hard copies.

In the application, users can easily download different types of data like invoices, bills, reports etc as documents in PDF format. In React application, we will learn how to export any HTML content into a PDF file.

To demonstrate the PDF export feature, we’ll add an HTML table and integrate the PDF export feature. For implementing the PDF export feature, we’ll use the react-to-print package module.

How to Generate PDF Document from HTML in React Js application?

	Create React Application
	Install Bootstrap and React To Print Library
	Create Data HTML and PDF Component
	Adding PDF Generate Component in App
	Run React Application

Create React Application

First, create a new React application, head towards the terminal and execute below npx command.

$ npx create-react-app react-html-to-pdf-app

Move inside the application directory

$ cd react-html-to-pdf-app

Install Bootstrap and React To Print Library

Next, install the bootstrap package to provide quick styling to our application. More importantly, install the react-to-print package library.

Execute the below command to install all the required packages in single npm command.

$ npm install bootstrap react-to-print --save

Create Data HTML and PDF Component

To demonstrate the HTML to PDF functionality, we will create a new table.component.js file under the src folder. This will contain a static HTML table and named TableComponent as shown below.

import React from "react";

class TableComponent extends React.Component {
 render() {
 return (
 <table className="table">
 <thead>
 <tr>
 <th>Firstname</th>
 <th>Lastname</th>
 <th>Email</th>
 <th>Image</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>John</td>
 <td>Doe</td>
 <td></td>
 <td>

 </td>
 </tr>
 <tr>
 <td>Mary</td>
 <td>Moe</td>
 <td></td>
 <td>

 </td>
 </tr>
 <tr>
 <td>July</td>
 <td>Dooley</td>
 <td></td>
 <td>

 </td>
 </tr>
 </tbody>
 </table>
);
 }
}

export default TableComponent;

Next, create the ExportPdfComponent with the file named export-pdf.component.js under the src folder.

import React from 'react';
import ReactToPrint from 'react-to-print';
import TableComponent from './table.component';

class ExportPdfComponent extends React.Component {

 render() {
 return (
 <div>

 <h1>Export HTMl Table in PDF File</h1>

 <TableComponent ref={(response) => (this.componentRef = response)} />

 <ReactToPrint
 content={() => this.componentRef}
 trigger={() => <button className="btn btn-primary">Print to PDF!</button>}
 />
 </div>
);
 }
}

export default ExportPdfComponent;

The important component to notice here is <ReactToPrint />, which is taking the reference of our TableComponent to generate and export it as a PDF file.

We are getting the TableComponent reference in the componentRef variable, then that is getting passed as content to the ReactToPrint component as a prop. The trigger prop is taking the button template to trigger the Export and print command.

Adding PDF Generate Component in App

Finally, import the ExportPdfComponent inside the App.js class component as shown below.

import { Component } from "react";
import "./App.css";
import "../node_modules/bootstrap/dist/css/bootstrap.min.css";
import ExportPdfComponent from "./export-pdf.component";

class App extends Component {

 render() {
 return (
 <div className="App container">
 <ExportPdfComponent/>
 </div>
);
 }
}
export default App;

Run React Application

You can now run the React application to the HTML to PDF working in action. Execute the following npm command to run the react app

$ npm start

It will run the application to the browser at default port 3000 at the following URL

http://localhost:3000

Conclusion

We have completed our tutorial on how to generate or export the React component into a PDF file. Using the ReactToPDF library, we can easily integrate the PDF generate functionality even for images on pages.

Category: React

		
		
			

	

 About The Author

 Jolly
 Hi, I’m Jolly. I am passionate about creating web applications and problem solving. With over 8+ years of experience in web development, I love building intuitive interfaces and finding creative solutions.

In my free time, I'm always learning new languages and frameworks to stay on top of the latest trends. I hope my tutorials can help others on their web development journey.

	
	 Post navigation
	 ← Previous Post
Next Post →

	 		
	
	
	
	
		
		Leave a Comment Cancel Reply
Your email address will not be published. Required fields are marked *
Type here..

Name*

Email*

Website

Δ

	

	
	

			
			
		
	

	
	
		
		

	
ADVERTISEMENT
	
	

	

	
	

	

ADVERTISEMENT

	

	

ADVERTISEMENT

	
	

	

						
						Advertisement

						

	

	

	

			
	
					
											
							
			
		
		Recent Posts

			
					Using Deferred Views in Angular 17 with @defer, @placeholder, @error, and @loading
									
	
					Angular 17 Standalone Components – Lazy Loading, Dependency Injection, Hooks and Much More!
									
	
					Ruby For Web Scraping: The Ultimate Tutorial
									
	
					[Angular 16] Show Toastr using Util Service with Ngx-Toastr
									
	
					[Angular] Ngx-Translate – Lazy Loading, Pluralization, Caching, Unit Test, Events and More!
									
	
					[React Js] Open Links, Anchor, Router, PDF in New Tabs
									

				
						

											
							
			Categories
	Angular
	Firebase
	Laravel
	Next.js
	Python
	React
	Vue

		
				
			Resources
	About Us
	Privacy Policy
	Disclaimer
	Contact Us
	Guest Post

		
						

											
									
				Recent Comments
	Jolly.exe on Angular 9|8 + Typescript: Create Filter List with Check-boxes to Select from List
	Raymond Parwez on Angular 9|8 + Typescript: Create Filter List with Check-boxes to Select from List
	Joel on React Native Confirmation Code Field Example with Number Boxes
	jack on How to Copy and Paste Images from Clipboard to WordPress Post
	Bro Man on Ionic 5|4 How to Select/ Unselect All Checkboxes with Indeterminate

				
								

										

			

	
					
											
								
				Copyright © 2016 - 2024 Freaky Jolly

			

						

										

			

	
	

			
			
	